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SUMMARY 

The unsteady two-dimensional flow around an array of circular cylinders submerged in a uniform onset 
flow is analysed. The fluid is taken to be viscous and incompressible. The array of cylinders consists of 
two horizontal rows extending to infinity in the upstream and downstream directions. The centre-to-centre 
distance between adjacent cylinders is fixed at three diameters, and the rows are staggered. Advantage is 
taken of spatially periodic boundary conditions in the flow direction. This reduces the computational 
domain to a rectangular region surrounding a single circular cylinder. Two cases, for Reynolds numbers 
of 1000 and 10,OOO, are presented. 

KEYWORDS Viscous Flow Array of Cylinders Numerical Methods 

INTRODUCTION 

Numerical methods for predicting the two-dimensional viscous flow past single cylinders have 
received a great deal of attention in the past decade. The complex flow regimes associated with flow 
separation, wake development and vortex shedding can now be analysed with fast and novel finite- 
difference algorithms for Reynolds numbers of the order of one thousand.’ The flows generated by 
singIe cylinders undergoing arbitrary accelerations can also be treated by rigorous means.’ 

When there are multiple bodies or arrays of bodies in the flow stream, the analysis becomes 
much more complicated. With one exception, all attempts to date have concentrated on solving the 
linearized equations which describe Stokes- and Oseen-type flows. Hasimoto3 used periodic 
fundamental solutions to Stokes’ equation to analyse the flow past a square array of circular 
cylinders. Happe14 has studied the creeping motion past arrays of cylinders in order to model the 
flow through fibrous materials. More recently, two analytical studie+ have been made of the slow 
viscous flow past pairs of cylinders, and experimental measurements’ have been made of the 
frequency of vortex shedding behind two circular cylinders in a staggered arrangement. Except for 
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this latter study, the results of the aforementioned analyses are limited to Reynolds numbers less 
than 1.0. 

One numerical study is known to the authors which treats the steady viscous flow through 
arrays of cylinders. Gordon' has used a vorticity-stream-function approach to calculate the steady 
flow field past various arrays placed transverse to a uniform stream. Unfortunately, this approach 
has a major deficiency, in that it is necessary to impose values for the vorticity and stream function 
at the boundary of the computational zone. When there is absolute flow symmetry, this presents no 
essential problem, since the lines of zero vorticity and constant stream function are straight and 
parallel to the onset flow, and they furthermore connect the centres of the cylinders. This is not the 
case when non-symmetrical vortex shedding destroys flow symmetry within an otherwise 
symmetrical arrangement of cylinders. In such cases, the locations and shapes of the contours of 
zero vorticity and constant stream function are not known a priori, and they furthermore do not 
coincide with simple co-ordinate surfaces. 

A substantial problem was encountered by Gordon' when he tried to apply the standard 
techniques to compute the steady flow field past staggered arrays having several rows of cylinders. 
His iterative calculations did not converge, and although he attributed this to poor computer 
precision and the effect of round-off error on the calculation of the wall vorticity, it is suspected that 
the problem was due to the manner in which he arbitrarily enforced the flow boundary conditions. 
In any event, results were presented after 200 iterations for various configurations of cylinders for 
Reynolds numbers equal to 1 and 20. 

Methods which do not incorporate the stream function do not have this limitation. For example, 
use can be made of the direct integral relationship between the velocity and vorticity fields (velocity 
induction law). This approach has already been used for a variety of flow problems by Kinney and 
his c o - ~ o r k e r s . ~ , ~ - "  Wu has made a number of contributions to the integral formulation as well. 
These are summarized, discussed, and expanded upon in Reference 12. 

The velocity induction law is a linear relationship which allows the velocity vector at any point in 
the flow to be computed from the superposition of vorticity fields throughout the flow regime. 
This is particularly useful if the flow is spatially periodic. The velocity field is then also spatially 
periodic, and no specific boundary values need be specified for the velocity components or the 
vorticity on the boundary of the computational domain. The flow is completely determined by the 
vorticity interior to the domain and the associated boundary condition imposed on its production 
at solid surfaces. 

In the present study, we extend the aforementioned approach to predict numerically the 
unsteady two-dimensional flow past an array of cylinders. There are two rows in the array. Each 
row is infinitely long in the horizontal (flow) direction, and the cylinders are staggered. This basic 
arrangement differs from that studied by Gordon' in that the array is aligned with the flow 
direction rather than transverse to it. 

Such an array of cylinders is found in many heat-exchanger applications. Each cylinder is in a 
non-uniform flow field, which is dominated by viscous effects associated with recirculating regions 
and wakes. Up to the present time, any knowledge about such flows has been gained through 
experimental measurements made on industrial-size equipment. This is the first attempt known to 
the authors to analyse the unsteady viscous flow through such arrays of cylinders at  moderate 
Reynolds numbers. 

ANALYSIS 

The flow geometry is shown in Figure 1. The cylinders form two horizontal rows, which are 
infinitely long and staggered. Fluid extends to infinity above and below the rows. Each cluster of 
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Figure 1 .  Flow geometry with primary computational region shown 

three cylinders forms an equilateral triangle, and the centre-to-centre distance between two 
cylinders along one side of the triangle is three cylinder diameters. 

The flow is started impulsively from rest with uniform velocity, U ,  . The flow is in the horizontal 
direction and may be visualized as being from left to right. The initial condition is that 
corresponding to inviscid flow past the array of cylinders. At each time level, the no-penetration 
condition is enforced by distributing bound vorticity on the cylinder surfaces. The enforcement of 
the viscous adherence condition causes free vorticity to be produced at the cylinder surfaces. This 
free vorticity enters the exterior flow and, as time progresses, it forms the boundary-layer and wake 
regions behind the cylinders. 

Since the cylinders are arranged with uniforms spacing in the horizontal direction, it is 
reasonable to expect that the flow will be spatially periodic. That is, the same flow picture should be 
produced if one shifts the field of view any arbitrary number of cylinders to the right or to the left. 
Furthermore, it is apparent that the same arrangement of cylinders is produced if the array is 
rotated 180" about one of the cylinders. Since the direction of flow is arbitrary, the flow picture 
should thus be invariant to such a rotation and a reversal in the flow direction. This implies that 
there should be staggered antisymmetry with respect to a horizontal plane situated midway 
between the rows. 

Governing equations 

Under the aforementioned idealizations, it is only necessary to analyse the flow in a domain 
of width equal to one-half the spatial period (i.e. 4 2 )  and centred on a single cylinder. This 
domain is rectangular in shape and is shown by the dashed boundary in Figure 1 .  The 
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antisymmetry is enforced at the vertical boundaries of the domain. Corresponding antisymmetric 
points are shown on the vertical right- and left-hand boundaries. These are A-A‘ and B-B‘, 
respectively. 

At any given time level, the free vorticity which may leave the domain at  point A’, say, is assumed 
to enter the domain at point A with equal strength but opposite sign (sense of rotation). The same is 
true for points B’ and B. It is further assumed that the top and bottom horizontal boundaries of the 
flow domain are sufficiently far from the cylinders that free vorticity does not cross them. The flow 
field need not be uniform there with velocity U , ,  but it is assumed to be irrotational so that the free 
vorticity is zero above and below the horizontal boundaries of the computational domain. 

The zero penetration condition on the flow at the cylinders is enforced by distributing bound 
vorticity, y ,  on their surfaces. This ‘bound’ vorticity is not to be confused with ‘boundary’ vorticity. 
The latter is associated with the free vorticity, o. Boundary vorticity is not used here. Rather, the 
local production of free vorticity at the cylinders is found from the enforcement of the viscous 
adherence condition. This is discussed at a later point in the analysis (see equation (10)). 

The velocity induction law gives the velocity at  any point p in the flow in terms of integrals of the 
free and bound vorticities, plus the uniform onset flow velocity, U , .  The law can be expressed in 
terms of the rectangular co-ordinates shown in Figure 1. The y-axis goes through the centre of the 
cylinder and the x-axis is midway between the two horizontal rows of cylinders. Thus one has 

An element of free vorticity is located at point 0 in the fluid, and an element of bound vorticity is 
located at point s on a cylinder of circumference C. The area of integration, A ,  is over the 
computational domain. The superscript n denotes that a summation must be made over the infinite 
number of periodically repeating regions located to the left and right of the computational domain. 

For this two-dimensional flow, o = ok and y = yk. We are interested first in evaluating only the 
x-component of velocity from (1). The integration and summation operations can be interchanged, 
so that it is required to evaluate an infinite series of the form 

1- + k x rGP . Y Y 
n =  c -  - m  (r”oI2 y2 + (x - nay  y2 + (x + nay 

For notational simplicity, the vortex element has been assumed to be at  the origin of 
co-ordinates, and the point p is at (x, y). The first term in the foregoing represents the contribution 
to the geometrical kernel from the vorticity in the computational zone. The remaining terms 
arise as we repeat this vorticity for n regions to the right and left. Here a is the spatial period, 
which is equal to 3 cylinder diameters. We have not yet introduced staggered antisymmetry into 
the expression. 

It is recognized that the series given in (2) also arises in the potential-flow theory used to 
describe a von Karman vortex street. It is evaluated in closed form by Milne-Th~mson,’~ and 
a detailed development is given in the di~ser ta t ion’~ on which this paper is based. When the 
result is expressed for the vortex element located at a general point in the upper half-plane, 
one has 

L 
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The expression given by (3) is rigorously valid for a vortex element in the upper half plane 
of Figure 1. To generalize it to any vortex element in the computational domain, we use the 
assumption that the vorticity field is staggered antisymmetrically with respect to the x-axis. Thus 
we must introduce another term into (3), which corresponds to the image vortex element of 
opposite sense of rotation (negative sign) and located at  the point with co-ordinates x’ and y’, 
where y’= -y  and x’= -a /2+x.  The term -a /2 reflects the fact that the lower row of 
cylinders is staggered an amount a/2 relative to the top row. The final result for the x-component 
of the first integral in (1) can be written 

L I L  + yo) + cos -(xp - xo) a 
In the foregoing, use has been made of the fact that cos 2.n(xp - xb)/a = - cos 2.n(xp - xo)/a. 
A similar expression can be developed for the x-component of the second integral in (l), which 

involves the bound vorticity, y. All that is needed is to change the subscript 0 in (4) to s, and 
note that the integral is over the cylinder contour with arc length dl. 

To summarize, the general velocity vector, V,, is given by (1). The x-component of this velocity 
involves the expression given in (4) plus its counterpart involving the bound vorticity. An 
expression for the y-component can be obtained in an analogous fashion, and the result is 

0 0  dxo dY0 9 ( 5 )  2.n 271 

a a 

+ 
cosh-(y, +yo) + COS-(X, - xO) 

where only the result for the first integral in (1) has been written out explicitly. The expression 
for the y-component of the second integral in (1) is obtained in a similar fashion. Once the two 
Cartesian components of the velocity vector are known, the component in any arbitrary direction 
can be determined. 

Note that the velocity terms are given by closed-form expressions. That is, no series summations 
are required. Also it follows that since the bound and free vorticities are spatially periodic, so 
too will be the velocity field. 

The next step is to develop the integral equation for the bound vorticity. This is obtained by 
specializing equation (1) for a point p just interior to the cylinder surface. The velocity component 
tangential to the cylinder is taken, and this velocity is equated to zero. Note is made of the fact 
that y represents a discontinuity in the tangential component of velocity across the cylinder 
surface (zero interior to the cylinder and - y  on the surface). The final governing equation 
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for y is obtained as follows: 

Y(4) - 5 K(6 ,  Y,, Y,, Xp, Y,)Y(Q)dO = - 2 C U W ( 4 )  + sin $ 1 3  (6)  j: 
where a cylindrical polar co-ordinate system has been adopted since all the bound vorticity is 
on the surfaces of the cylinders. 

In the foregoing, the angles are measured in the counter-clockwise direction from the rear 
(i.e. downstream) stagnation point of the cylinder towards the front. The angle 4 gives the 
location of the point p where the tangential velocity component is evaluated. The angle 8 gives 
the location of any other bound vortex point q. Thus 

y ,  = 0.5 sin 4 ,  y ,  = 0.5 sin 8, 
X, = 0.5 cos 4,  X, = 0.5 cos 6 ,  (7) 

and the cylinder radius has been set equal to 0.5. Also, the variables have been non-dimensional- 
ized with respect to the free-stream velocity, U , .  The geometrical kernel in (5) is given by 

271 271 

a a 
271 271 
a a 

8 sinh -(yp - y,) + cos 0 sin -(xp - x,) 

cash -(yp - y,) - cos -(x, - x,) 
w, xp, Y,? Xq, Y,) = 

1 271 271 
sin 8 sinh -(yp + y,) - cos 6 sin -(xp - x,) 

a a - 
2n 2n: 

cash -(yp a + y,) + cos -(xp a - x,) 

The quantity uW(4)  in the non-homogeneous term of (6) is the tangential component of velocity 
induced at the cylinder by the free vorticity in the fluid. It is given by 

where xp and y ,  are as given in (7), and xo, y o  denote the co-ordinates of the free vortex element, 
wo. Except for the different kernel functions, equation (6) is identical to that used in Reference 2. 

The bound vorticity, y, obtained from equation (6) represents an apparent slip velocity on the 
surface of the cylinder. Following the methods of References 2 and 9-1 1, the slip velocity must 
be reduced to zero by the proper production of free vorticity at the cylinder surface over a 
suitable time increment. This couples the bound vorticity to the free vorticity through the 
boundary condition imposed on the solution for the free vorticity. In dimensionless form, the 
boundary condition in cylindrical polar co-ordinates is 

- (g) d t  = y( t ) .  
Re r = 0 . 5  

The solution of the governing equation for y and the calculation of the velocity and free vorticity 
fields were carried out numerically. This is discussed in the next section. 

Numerical formulation 

The first task was to develop a suitable grid for the computational zone surrounding the 
cylinder. The cylinder of unit diameter was first circumscribed by two concentric circles of radii 
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0 5  + Arl and 0.5 + Arz. These circles formed the boundaries of two uniform layers of cells adjacent 
to the cylinder. Between the second concentric circle and the rectangular outer boundary of the 
computational region, a non-orthogonal grid was generated using the method of Thames.” A 
flow network of 80 x 29 fluid cells was generated, as shown in Figure 2. There are eighty 
cells of equal width 0.5AO spaced around the circumference of the cylinder. The cells lines 
5 = constant emanate from the cylinder radially and eventually intersect the outer rectangular 
boundary. The first of the closed curves q = constant is that of the cylinder surface. These curves 
are numbered sequentially in the radial direction, with the final curve coinciding with the 
rectangular outer boundary of the computational region. This non-orthogonal grid has the 
advantage that the lines of 5 = constant in the central (i.e. primary) computational zone match 
up with those in the inverted ‘mirror image’ zones to the right and left at the mutual boundaries. 
Also there is good flow resolution near the surfaces of the cylinders. 

The network generated by the method of Thamesl’ produced the co-ordinates in the x-y 
plane of the intersection of the curves q = constant and 5 = constant. These intersection points 
were connected with straight-line segments, thus producing fluid cells which are quadrilaterals. 
The direction normal to each side was determined by analytical geometry, as were the lengths 
of the sides and the areas of each cell. 

A typical fluid cell is shown in Figure 3. Velocity components were first obtained at the centre 
points of each side 5 = constant in the direction of the inward and outward drawn normals to 
the sides. This required numerical evaluations of the integrals in equations (4) and (5),  plus those 
involving the bound vorticity. Once the two Cartesian components, of the velocity were found, 
they were resolved along the normal directions to the cell boundaries to give u1 and uz, as 

Figure 2. Flow network employed in numerical formulation 
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, 

Figure 3. Schematic diagram of a typical fluid element interior to the flow 

shown in Figure 3. The integration procedure is described more fully in the subsequent 
paragraphs. The velocity components in the direction normal to the sides with q = constant 
were obtained by enforcing the principle of mass conservation. The process began with the fluid 
cells next to the cylinder, where the velocity normal to the cylinder was known to be zero. 

Consider, for example, some interior cell. By the aforementioned procedure, the velocity at 
the bottom of the control volume (i.e. u l )  plus those on the sides, u1 and u2 are known; then 
u2 needed to satisfy mass conservation is given by 

s1 1 u 2 = u , - + - ( u 1 h 1  - u 2 h 2 ) .  
s2 s2 

For a selected point ( x p , y p ) ,  the integrations shown in (4) and (5) were performed over each 
fluid cell in the mesh, assuming that the vorticity in each cell was uniform. The assumption that 
y was uniform over each surface segment of length 0.5A8 was also made for corresponding 
integrations involving the bonund vorticity. For the most part, the vortex elements were 
suficiently far from the point p that each element could be treated as a point vortex of strength 
w,AA, or O.5ysA8, located at the centroids of the cell or surface segment. These were then 
multiplied by the terms in brackets in (4) and (5).  

The point-vortex approximation was not used when the distance between the element centre 
and the point p was less than 5 times the largest diagonal dimension of the element. In those 
cases, the quantity in brackets in (4) and ( 5 )  had to be integrated over the region of interest, but 
the vortex strengths were still assumed to be uniform. 

The procedure involved first evaluating the Cartesian velocity components using the point 
vortex approximation throughout. Call this result Auk, say. The exact form for this velocity 
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due to the free vorticity was then calculated from the expression 

1 (Y,  - Yo) 
2n 

723 

In this way, the contribution due to the (assumed) point vortex located at  point 0 was subtracted 
out of the expression, and the more exact integrated result was added in. 

The integral in the above was evaluated following the same procedure used in Reference 2. 
That is, the integration can be performed exactly with respect to yo for a differential strip of 
width dx,. The final integration with respect to xo was performed numerically using a 40-point 
Gauss-Legendre quadrature formula. For the integration over a surface segment of a cylinder, 
the 40-point quadrature formula was also used. 

Regardless of whether the point-vortex approximation or the more exact numerical quadrature 
procedures were used, the end result was a vorticity magnitude (either bound or free) multiplied 
by a geometrical coefficient. To aid the numerical evaluations of the velocity at each point p, 
the geometrical coefficients for each cell and each surface segment were generated once and then 
stored on magnetic disk. They were then retrieved and used as needed in the flow calculations. 

The principle of the conservation of vorticity was also applied to each fluid cell. This required 
the evaluation of the transport of vorticity (by diffusion and convection) across the cell boundaries. 
The vorticity convected across a cell boundary was taken to be that from the upwind cell. For 
example, the vorticity convected across the surface in Figure 3 by velocity u1 was set equal 
to that at node (i - 1,j).  Diffusion was evaluated centrally by computing the flux based on the 
vorticity difference between node points in adjacent cells divided by the separation distance 
between cell centroids. The (Euler) explicit time method was used to evaluate the time rate of 
change of the free vorticity in a given cell. That is, the rate of convective and diffusive transport 
of vorticity into the cell centred upon node ( i , j )  was assumed to take place at time t. The time 
rate of change of vorticity in the cell was then given by 

AAi, j [oi , j ( t  + At)  - wi , j ( t ) ] /A t .  

The pressure distribution around the cylinder, the wall shear stress, and the associated lift, 
drag and moment coefficients were evaluated using a procedure identical to that in Reference 2. 

RESULTS AND DISCUSSION 

It is realized that the underlying assumption that the flow is spatially periodic and has staggered 
antisymmetry may not be realistic for flows at moderate to high Reynolds numbers. It certainly 
implies a geometrically perfect array and the absence of external disturbances. As the Reynolds 
number increases, the flow could become unstable to even small disturbances. However, it is not yet 
known when such effects could occur, or even if they are significant. By computing the unsteady 
(but nevertheless two-dimensional) flow using the full vorticity transport equation, we do allow for 
the growth of non-linear but spatially periodic disturbances, such as those introduced by non- 
symmetrical vortex shedding from the cylinders. Other effects cannot be accounted for by the 
present analysis. 

Numerical calculations have been carried out for an array of cylinders with Reynolds numbers of 
100, 1000 and 10,000. Only the results for the higher two Reynolds numbers are presented here. 
Campanion calculations have been carried out for a single cylinder in cross flow at the same 
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Reynolds numbers. The results of the latter calculations have been compared with those from other 
studies of the steady and unsteady flow over a single cylinder. 

The single cylinder was located at  the centre of a square computational region. The non- 
orthogonal (but nevertheless symmetrical) grid was generated using the method of Thames,' with 
80 grid increments in the circumferential direction around the cylinder and 40 grid increments 
between the cylindrical surface and the square outer boundary of the computational domain. The 
length of this boundary was varied from three to eighteen cylinder diameters with minor changes in 
the outcome of the results. Steady state values for the drag coefficient compared very favourable 
with studies performed by Thoman and Szewczyk,'6 Jordan and Fromm,I7 Chorin,18 Gollins and 
Dennis" and Fornberg.20 

Unsteady numerical results obtained with the 3 x 3 computational domain were compared with 
those from a previous analytical study2' at a Reynolds number of 1000. It was found that at 
t = 075, the wall-shear stress distributions computed by the two methods agreed very well up 
to the vicinity of the sparation point. Beyond that point, the analytical results showed a stronger 
reverse flow than that found in the numerical calculations. However, the results were inconclusive 
in this region because insufficient terms were carried in the series expansion to allow the shear stress 
to be evaluated over the entire surface in the backflow region. Also, the flow is very sensitive to the 
pressure distribution here, and the Blasius expansion begins to lose validity as the wake and region 
of separated flow grow with time. Therefore, it is felt that the comparisons are satisfactory for our 
purposes. 

The results to be emphasized here are for the array of cylinders. The dimensionless time step 
(based on diameter) was At = 0008 for both Reynolds numbers. The two layers of cells next to the 
surfaces of each cylinder had equal radial increments of 0.016 diameters. It is realized that 
maintaining the same cell sizes for the higher Reynolds number introduces some additional 
artificial viscosity into the results. However, it was not feasible to decrease the cell size, since the 
concomitant increase in the number of cells, and thus the geometrical coefficients, would cause the 
execution time to exceed practical limits. The calculations were carried out at  the higher Reynolds 
number in order to demonstrate that the numerical techniques employed in this study are suitable 
for moderate Reynolds numbers, and to show the general trends of the results at this higher 
Reynolds number. 

The time development of the viscous regions near the cylinders for a Reynolds number of 1000 
can be followed in Figure 4. Contours of constant vorticity are shown at  early, intermediate, and 
advanced time levels. Note that corresponding contours for the lower row of cylinders have signs 
opposite to those for the upper row of cylinders. At t = 075, it is noteworthy that the line of zero 
vorticity links the forward and rear stagnation points of cylinders in adjacent rows. After the 
passage of 3.75 dimensionless time units, the wake behind each cylinder is quite asymmetrical, and 
three contours of the zero vorticity have emerged. Two link the cylinders in each row, and one 
forms a continuous curve throughout the region of fluid between the two rows of cylinders. It can 
be seen that negative vorticity is just beginning to break away from the outside surfaces of the upper 
and lower cylinders. The process is more complete for t = 5.75, which is slightly less than the last 
time for which results have been computed, t =6.0. Note that no problem arises due to the 
convection of vorticity beyond the computational zone in the downstream direction, since the flow 
domain has effectively been extended to infinity by the use of a spatially periodic region of flow. It is 
felt that the major flow development has occurred by the time a particle moving with the 
undisturbed stream has traveled 6 cylinder diameters, which is equivalent to 6 units of dimensional 
time. 

It is important to note that the contours of zero vorticity in Figure 4 are not straight, nor do they 
coincide with co-ordinate lines. This follows since there is no symmetry inherent to the flow. Thus 
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Figure 4. Time development of vorticity contours for Re = 1ooO: (a) t = 0.75; (b) I = 3.75; t = 5.75 

the conventional stream-function - vorticity formulation used by Gordon8 cannot be applied to 
this flow problem. 

An indication of the velocity distributions on the outer boundary of the computational region 
for a Reynolds number of 1000 is shown in Figure 5. Here, velocity vectors depicting the horizontal 
velocity component are shown on the vertical portions of the domain. The vector just below 
the central diagram represents the magnitude of the undisturbed free stream velocity. The vertical 
velocity components on the upper and lower portions of the diagram have been magnified by 
a factor of ten in order to make them show up more clearly. 



726 E. A. CERUTTI, R .  B. KINNEY AND M. A. PAOLINO 

Figure 5. Velocity profiles on the boundary of the computational region at various times: Re = lo00 

I t  can be seen from Figure 5 that there is flow reversal behind the cylinders for t = 3.75 and 
t = 5.75. Also there is a small amount of flow transverse to the cylinders across the upper and 
lower horizontal boundaries. This is not suppressed in the current calculations and is allowed 
to occur naturally. It is assumed that the free vorticity of the fluid is zero beyond the upper and 
lower boundaries. Therefore, no vorticity is allowed to enter the computational domain across 
these boundaries by convection. There is a small amount of convective and diffusive transport 
out of the domain, however. 

The development of the drag coefficient with time for a Reynolds number of 1000 is shown in 
Figure6. The general behaviour is shown to be initially similar to that for flow over a single 
cylinder. As time progresses, however, the drag coefficient for a cylinder in the array is seen to drop 
continuously and appears to be approaching an asymptotic value. 

Figure 7 demonstrates the development of the lift coefficient with time. Note that it generally 
carries a negative sign and exhibits a cyclical behaviour. A negative lift coefficient indicates that the 
cylinder rows are experiencing forces which attempt to drive them towards each other. 

The time development of the constant vorticity contours for a Reynolds number of 10,000 are 
shown in Figure 8. The calculations at this higher Reynolds number were carried out to 14.5 
dimensionless time units. The flow develops in a manner similar to that for a Reynolds number of 
1000. Note once again that after the passage of 3.75 dimensionless time units, the zero vorticity 
contours form a continuous curve between cylinders in the same row. 

The development of the drag coefficient with time for a Reynolds number of 10000 is shown in 
Figure 9. Note that the drag curve generally decreases with time and does not achieve a relatively 
steady value, as it does in the case of a single cylinder. Also it would be erroneous to conclude that 
the curve had flattened out at a dimensionless time of approximately 5.5. This indicates that the 
results for the case of Re = 1000 most probably are not at steady state for t = 6.0. 
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Figure 6. Time variation of drag coeffcient for flow over a single cylinder and the array of cylinders: Re = 1000 

R e  = 1000 

0 1.0 2.0 3.0 4 . 0  5 . 0  6.0 

T I M E ,  t 

Figure 7. Time variation of lift coeffcient for flow over the array of cylinders: Re = lo00 
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Figure 8. Time development of vorticity contours for Re = 10,ooO: (a) t = 3.75; (b) t = 5.75; (c) t = 14.5 
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Figure 9. Time variation of drag coefficient for flow over the array of cylinders; Re = 10,000 
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Figure 10. Time variation of lift coefficient for flow over the array of cylinders: Re = 10,000 

Figure 10 demonstrates the development of the lift coefficient with time for Re = 10,000. Note 
once again the cyclical behaviour of the curve. In this case, however, the amplitude of the 
oscillations appears to be damping out with time. Also, the lift coefficient is positive between t = 6.0 
and 9.3. During this time the fluid forces are tending to separate the cylinders. 

CONCLUDING REMARKS 

The two-dimensional analysis of the unsteady viscous flow past an array of cylinders has been 
developed from basic kinematical and dynamical principles. The approach used in the present 
study is an extension of that applied to single 
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We have demonstrated that the method is amenable to flows which are spatially periodic. 
Determination of the velocity field from the velocity induction law then involves the evaluation of 
an infinite series, which may be expressed in closed form using classical results given by Milne- 
T h ~ m s o n . ' ~  

The principal advantage of the current method is that the stream function does not appear in the 
formulation, and thus values for this quantity need not be specified on the boundaries of the 
computational domain. Furthermore, lines of zero vorticity (i.e. flow symmetry) need not be 
specified. This is in sharp contrast to the conventional approach used by Gordon,* which breaks 
down whenever steady symmetrical flows do not occur for the prescribed Reynolds number. The 
authors believe that this was the probable cause of the convergence difficulties encountered by 
Gordon* for the staggered array of cylinders, and not the lack of computational precision, as 
hypothesized by him. 
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NOMENCLATURE 

Spatial period. Distance between adjacent cylinders on the same horizontal row. 
Area of integration. 
Circumference of cylinder. 
Drag coefficient (DraglO.5~ U ;  D) 
Lift coefficient (Liftl0.5~ U L  D) 
Cylinder diameter 
Lengths of the side of a control volume (see Figure 3) 
Unit vectors in the x , y  and z directions. 
Geometrical kernel function defined in equations (8) and (9). 
Length of element on cylinder surface. 
Position vector. 
r p  - ro 
Reynolds number (U D/v)  
Lengths of the bottom and top of a control volume (see Figure 3). 
Tangential component of velocity induced at the cylinder by the free vorticity in the fluid. 
Onset flow velocity. 
Velocity induced at an arbitrary point p. 
Bound vorticity on cylinder surface. 
Body orientated co-ordinate which increases in the radial direction. 
Angles identifying points on cylinder surface. Measured counter-clockwise from rear 
stagnation point. 
Kinematic viscosity. 
Body orientated co-ordinate which increases clockwise in the tangential direction. 
Free vorticity. 

Subscripts and superscripts 

n Summation index. 
0 Arbitrary point in flow field associated with free vorticity. 
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p 
S 

Arbitrary point in flow field. 
Arbitrary point on cylinder surface associated with bound vorticity. 
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